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N A T I O N A L  A E R O N A U T I C S  AND S P A C E  ADMINISTRATION 

T E C H N I C A L  N O T E  D -  1920 

ANALYSIS OF A X I S Y M M E T R I C ,  R O T A T I N G  

P R E S S U R I Z E D  F I L A M E N T A R Y  S T R U C T U R E S  

0. R. Burggraf and H. U. Schuerch 

S U M M A R Y  

An analytic t reatment  of the equilibrium configurations for  thin-walled, 
axisymmetr ic ,  rotating, f i lamentary p re s su re  vesse ls  is presented. Solu- 
t ions in  the fo rm of tabulated elliptical integral  functions a r e  developed for  
the pertinent geometr ical  charac te r i s t ics  of the s t ruc tura l  shapes and fo r  
their  associated f i lamentary geometr ies .  
corresponding s t ruc tures  is presented, based upon a discussion of the math- 
ematical  propert ies  of the solutions, 

A morphological review of the 

Experimental  realization of the equilibrium configuration of a single 
fi lament subject to a centrifugal force  field confirms the validity of analytic 
expr e s sions . 

Applications of formulas  to problems of external loadings and of the 
s ta t ic  stability of fi lamentary,  p r e s s u r e  stabilized s t ruc tures  demonstrate  
the utility of the analytical  technique. 

I N T R O D U C T I O N  

The use  of f i lamentary s t ruc tures  is of continually increasing interest  
for  applications requiring ult imate s t ruc tura l  performance, and is made  
possible by exploiting the remarkable  physical propert ies  of mater ia l s  in  
the fo rm of thin, continuous f ibers .  
in such s t ruc tures  a r e  based upon two basically different approaches: anal-  
ysis  f rom the point of view of reinforced] anisotropic shell  theory o r ,  al- 
ternatively,  f rom considerations of individual filaments. 

Theories  for  s t r e s s e s  and deformations 
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With the f i r s t  method, s t r e s s e s  in  the mat r ix  mater ia l  a r e  easi ly  ac-  
commodated, thus allowing grea t  generality. A fundamental t reatment  of 
this  type of problem is given by Green  & Adkins (Reference 1) in a chapter 
on reinforced mater ia ls .  A similar t reatment  applied to orthotropic ma- 
t e r i a l s  is given, for  instance, by Harmon in Reference 2. 

With the second method, the ma t r ix  mater ia l  usually i s  assumed to  be 
completely compliant, the tension in the filament being the dominant load 
carrying stress in the s t ructure .  
s t r ic ted,  is s impler  to  apply and m o r e  readily yields usable information. 
Thus, the case  of filament wound s t ruc tures ,  subject to  pure p r e s s u r e  load- 
ing, has  been analyzed in  detail. The resulting concept of monotropic mem- 
branes  as s t ruc tura l  elements,  and the i r  analytic t reatment ,  has  been pre-  
sented by the authors  in Reference 3. 
tu res ,  representing a n  optimum design configuration due to  the uniformity 
of filament s t r e s s ,  has  been discussed by Hoffman and Schuerch in  Refer- 
ences 4 and 5 ,  and for  the special  case  of filament wound p res su re  ves se l  
end closures ,  by Zickel in  Reference 6. 

The filament analysis,  though m o r e  r e -  

The special case of isotensoid s t ruc-  

In many proposed applications of f i lamentary s t ruc tures ,  centrifugal 
loading of the fi laments is expected to be important. The basic  equilibrium 
conditions fo r  combined p res su re  and centrifugal loading were  given in Ref- 
e rence  3; however, in  fur ther  analysis  of the filament geometry,  only p re s -  
s u r e  loading was considered. The present  repor t  is concerned wi.th analyz- 
ing the effects of centrifugal loading on filament wound pressur ized  s t ruc-  
tu res .  

In contrast  to Reference 3, wherein numerical  resu l t s  were  obtained 
by integrating the  equilibrium equations on a digital computer,  the present  
report  gives the resu l t s  in  the f o r m  of analytic expressions involving tabu- 
lated functions. 
formulas  as a special  case.  As a fur ther  distinction, the basic  differential  
equations for  monotropic membranes  were  developed in Reference 3 f rom 
differential geometr ical  considerations of l ines on sur faces  without initial 
res t r ic t ion  to  sur faces  of revolution. 
r i um condition for  the 
is given h e r e  for  the sake of completeness.  

The resu l t s  of Reference 3 may  be obtained f rom these  

An al ternate  derivation of the equilib- 
a r t icu lar ly  interesting case  of sur faces  of revolution P 
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LTST OF SYMBOLS 

= sin6 
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s e e  equation ( 1 7 4  

integral  defined by equation ( 2 0 )  

2 2 V p  r 
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modulus of elliptic integral  

filament 1 eng t h 

= d / r o  

filament mass per  unit length 
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force  on filament 

ro) 
p re s su re  ( p  = p r e s s u r e  a t  r = 
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0 
P 

r 

r equatorial  radius  
0 
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T tension in filament 

T tension a t  r = r 
0 0 

2 
X = R  

s e e  equations (17) x2 I X 3  
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LIST OF SYMBOLS (Continued) 

Y see equation (16)  

z 

Z = z /rO 

Q 

B helix angle 

Ao(b J k, 

distance along axis of symmetry 

angle between tangent to meridian curve and z axis 

Heuman Lambda Function, see equation (27)  

n(b , Q2, k), n(a2,  k) elliptic integrals of third kind 

cp central angle 

n m' r 0 u2/T 0 , centrifugal loading parameter 

w 

pf 

angular velocity 

density of fluid 
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r . BASIC DIFFERENTIAL EQUATIONS 

A. Equilibrium Conditions 

Consider a uniformly spaced a r r a y  of n fi laments placed on a sur face  
of revolution as  shown in F igure  1. 
will constitute a s t ruc ture  that can be described as a monotropic membrane  
(Reference 3) .  
internal positive p r e s s u r e  p , and by rotation with angular velocity 
around the z-axis .  Assume fur ther  that a non-structural  l iner  contains the 
internal p re s su re  and dis t r ibutes  the p r e s s u r e  loads equally among the  fi la- 
ments  without fur ther  contribution t o  the load carrying function of the s t ruc -  
ture .  

If the  spacing is small, the fi laments 

Assume this  s t ruc ture  t o  be subject t o  loads generated by an  

Now consider a n  individual filament as  a completely flexible but axially 
stiff s t ruc tura l  element. To determine filament shape, apply 3 independent 
equilibrium conditions: (1) equilibrium of torques about the z-axis ;  (2)  
equilibrium of forces  in the z direction; and (3)  equilibrium of forces  
paral le l  t o  the filament. 
sponding force  components are  needed. 
the components of the tension in  the filament a r e  simply 

To apply these  equilibrium conditions, the  c o r r e -  
Referr ing to F igure  2 for  notation, 

T = T cos0 cost2 

T = T cos4 sint2 . 
Z 

r 

The p r e s s u r e  fo rce  affects only the equilibrium of forces  in the z 
direction. The  angular separat ion between adjacent f i laments  is 2V/n , 
where n is the number of fi laments crossing the plane z=O . Hence the  
distance separating the  fi laments a t  radius  r is jus t  2V r / n  , and the z 
components of the p re seu re  force  on a fi lament pe r  differential  increment 
of radius  is given by 

The centrifugal force  affects only the equilibrium condition along the 
ax is  of the filament, so that  only the component paral le l  t o  the filament is 
needed. The centrifugal force  fo r  a length d& of fi lament of l inear  density 
m' is 

dN = m ' r 2 d . C  

where is the angular velocity of the filament about the z-axis .  This  
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radial  vector  resolves  paral le l  to  the filament to  give 

dNT = (m' r dk) siW cos@ . 
Since the element of length dk 
to 

resolves  along the radius vector  according 

dk sincYcosB = - d r  , 

the  component of centrifugal force  paral le l  to the filament is given by 

( 3 )  dNT - - - m ' r  J d r  . 

With these  expressions for  the force  components, the equilibrium 
conditions a r e  now readily obtained. 
produces a torque about the z-axis,  equilibrium in torque requi res  that 
rT, be  constant along the filament, o r  

Since only the tension in  the filament 

T r sir@ = T resid , (4 )  
0 0 

where the constant has  been evaluated at z=O . * F o r  equilibrium of 
forces  in  the z direction, only the filament tension and p r e s s u r e  force  
contribute. Hence, f rom equations ( l b )  and (2), 

d 2l7 p r - (T  cosp  COS^) = d r  n 

The final condition of equilibrium of forces  paral le l  to the filament 
involves only filament tension and centrifugal force.  
t he re  resu l t s  

F r o m  equation ( 3 )  

- - m ' r  0 2 .  dT 
d r  
- -  

B. Fi lament  Orientation 

Equation ( 6 )  may be integrated immediately to  give 
-l 

L r 
( T I T  0 ) = 1 t:(i -2) , 

r 
0 

where n = m '  r 0 2 d / T  0 . 

( 5 )  

* F o r  isotensoids (T=const.  ) , equation (4) was obtained in  Reference 3 
f rom consideration of geodesic curves  on a surface of revolution. 
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The constant of integration was evaluated a t  z=O . Intfoducing non- 
dimensional coordinates R = r / r o  and Z=z / ro  , and the abbneviated nota- 
tion C = s i d 0  , the  azimuth angle @ of the filament on its su r face  of revo- 
lution obtained f r o m  equation (4) becomes 

C.  

R [ l  t T n ( l  - R )  J 
1 2 1  s i 4  = 

Finally, the integral  of equation ( 5 )  is expressed as 

(Note that QO=O since z=O is 
pressurizing fluid has  density 
tr ibution is that fo r  solid body 

r 
0 

T cosBo t Pr  d r  
0 

r 

taken as the  plane of symmetry) .  If the 
Pf , then the steady s ta te  p r e s s u r e  dis-  
rotation: 

1 
t - p  r2J , = Po 2 f  

(9) 

where po is the p r e s s u r e  on the axis of rotation. With this  resul t ,  the 
integral  i n  equation (9) may  be evaluated. Thus, with K=2T po r o / n  To , 
equation (9) reduces t o  

2 
P d r  

cosb cosa  = cos@ - z 1 K ( l  - R 2 ) [l t 4 1 f  (1tR2)]  . 
PO 

0 

(11) 
Using equations (7 )  and (81, T and 4 may be eliminated: 

U cosa  = Jm R 

C. Fi lament  Geometry 

Although the orientation of the filament is determined completely 
by equations (8) and (12), its location in  space is yet to be de te rh ined .  
The angles denoted in  F igu re  2 may be defined by the relations 
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COSQ - - co te  = dZ 
dR 
- -  

dV sir4 
dR 2 2 .  R - = - tad/sinCX = 

(1 - s in  8)(1 - cos (u) 

Thus, f r o m  equations (8) ,  (1 2), and (13a) the meridian curve must  sat isfy 

2 P 4, (1+R2)] d z -  L K  (1-R )[1 + -  
dZ 2 Po - = *  
dR 

p J r  

Po 
c2 t y z - L K ( 1 - R  2 )[It; (1+R2)])2 [ l+ in ( l -R  )]  - - -  

2 
R2 

Similarly,  f r o m  equations (8), )12), and (13b) the central  angle Q must satisfy 

The differential  equations (14) and (1 5) completely determine the 
The radicand in  the denominators i s  a fifth- filament curves  in space. 

2 
degree polynomial in R , Hence, the  integrals  for  Z and Q 

are hyperell iptic integrals  of c l a s s  2; 
requi res  either numerical  integration o r  complicated s e r i e s  expansion. 
However, closed fo rm solutions in  t e r m s  of tabulated functions may  be 

obtained if the parameter  ( p  0 r 

to a s t ruc ture  pressur ized  by a light fluid ( o r  gas).  
force  then affects the filament geometry only through the parameter  J& . 
With this  simplification, the radicand in  the denominators becomes a cubic 

in R , and the integrals  reduce to  ord inary  elliptic integrals .  In the  fol- 

lowing, only the case  (c) k~ r 

(R2) (R2) 
evaluation of such integrals  usually 

2 2  /po) is set equal to  zero,  corresponding 

The effect of centrifugal 
f 0 

- 
2 

= 0) will be considered. 2 2  
0 /Po f 
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t 11. INTEGRATION OF EQUATIONS 

I A. The Factored Cubic 

I The differential  equations for  the meridian curve and the cent ra l  angle 
both contain as a denominator the quantity 

I (16) 

= $K'-o 2 3  )x - 4[n(l t?)  t ~ ( i Z - $ ) ] x '  t 4[(1+!$' - ( i Z - $ ) 2 ] x - 4 ~  2 

2 
where x=R , and where ( p  r '/p ) has been set  equal to zero.  To f 0 0  

facil i tate integration of the equations, the factored fo rm of the radicand is 
prefer red .  One root of the cubic radicand is x =1 corresponding to  the 

previous choice of z=O as plane of symmetry.  Dividing out this  root f rom 
the radicand leaves the quadratic 

1 

(K2-G2)x2 t 4 

The remaining two roots  of the cubic a r e  

- 2 -v H2 t C2 (K2 - 0')) , ( 1 7 4  
K2 - 0 x2 - - 

where 

2 t n - L ( K 2 - 0 2 )  . 
4 

Thus, in  factored f o r m  

2 2  K - O )(1 - X)(X - x,)(x - x3) . 

The par t icular  order ing of the roots  indicated in  equation (18) is not 
the only possible choice. Altogether, t he re  a r e  24 permutations of the  
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inequality x x x 1 providing positive values of the radicand (12 for  

K > and 12 for  K e 4) . However, most  of these perm-utations do not 
correspond to physically realizable values of 0 ,  K ,  and C fo r  rotating, 
pressurized s t ructures .  
roots  x and x , outlined in  Appendix A, reveals  the following theorems 

which determine the acceptability of a given permutation of the roots:  

3 2  

A cr i t ica l  examination of equations (1'7) for  the 

2 3 

Theorem A. F o r  K > n, x2 2 0 and x 0 for  all physically 
3 

realizable values of K , 0, and C . 
Theorem B. F o r  K C 0 , x2 2 0 , x3 > x2 and a l so  x > 1 for 3 

all physically realizable values of K ,  0, and C . 
In addition, the initial condition Z=O a t  x = l  provides the condition: x and 1 
cannot be separated by x o r  x 

3 -  2 

Application of these  c r i t e r i a  shows that the only physically realizable 
order ings of the roots  a re  the following: 

3 

2 3  

C a s e C :  K e n ,  x < x < l < x  

C a s e D :  K e n ,  l < x < x  < x  

2 

A discussion of the physical significance of these  distinct ca ses  is de- 
f e r r ed  until the section on morphology of the s t ruc tures .  F o r  the present,  
it is mere ly  noted that the analytical  f o r m  of the solution may  be different 
for  each of t hese  four cases .  

B. Meridian Curve 

F r o m  the condition of axial  symmetry,  the fi laments fo rm a surface 
which may  be considered to be generated by rotating a curve in  a meridian 
plane (cp = const. ) around the z axis. The slope of this  mer id ian  curve is 
given by equation (14), which reduces t o  ( P  = 0) : f 

'[(dl - c 2 K  - 2) t -x] K 
dZ 2 2 
dx 

- = *  
1 x[l t p ( 1  - x)]2 - c 



With y defined by equation (16), introduce the notation 

X 

The meridian curve i s  given in  terms of the J-integrals:  

The J- integrals  a r e  evaluated in Appendix B for  each of the four c a s e s  of 
equations (19). F o r  Cases  A and D, the meridian curves a r e  given by 

(21) 

where -.Jz . 
3 sin# 1 =d? 1 -x and kl - 

F o r  the other two cases ,  the modulus k , becomes imaginary. Hence 
for  Cases  B and C, the al ternate  f o r m  of the integrals  is used: 

(22)  

where 

6 6 

sin# = V and k2 = v  * 
2 2 3  

2 

An exceptional c a s e  remains for  consideration: K=h)  . By con- 
sidering the limiting behavior of equations (17), the roots  of the cubic a r e  



found to  go as 
- 2  
b Lim x = 9 

K - 0  2 

Consider the fo rm of solution given by equation (21); then 

and 

Lim k = 0 . 1 K-0 

With the  s e r i e s  expansions of the elliptic integrals  

= # t f k 2  (9 - sin# cos#) t - - - , 

E ( # , k )  = f d x #  d# = # - k2 (9 - sin# cos#) t - - - , 
0 

and with the above limiting values, the solution for  K = 0 is found to  be 
(24) 

where x is given by equations (23) above. F o r  C=O (meridian wrapped 

fi laments) equation (24) reduces to  
2 

Equation (24) has  been verified as  the integral  of equation (14) for  K = O  
(with Pf = 0) by d i rec t  differentiation. 



C. Central  Angle 

If the parameter  C is not zero,  the filament will advance around the 
z-axis as it is wound. The central  angle cp ( s e e  F igure  2) is determined by 

integrating equation (15). In terms of the var iable  x = R  , and fo r  P = 0 , 
this equation reduces to  

2 
f 

In t e r m s  of the J- integrals  defined by equation (20), the central  angle is 
given by 

f C J _ l ( ~ )  
XY 

c p =  
X 

As shown in Appendix B, the integral  J-l involves the incomplete elliptic 

integral  of the third kind, which in  tu rn  involves Theta functions. These 
functions are  tabulated, i n  Reference 9, o r  alternatively can be evaluated 
by means  of a n  infinite s e r i e s .  
t e r m s  of Heuman's Lambda Function, A 

lated i n  Reference 7, fo r  example. 

integrals  of first and second kinds by 

The complete integral  may  be evaluated in  
as in Appendix B, which is tabu- 

0 

A is given in  terms of the  elliptic 
0 

(27) 

Thus fo r  Case A (equation 19a), using equations (B-6) and (B-13), we obtain 

where 

F o r  Case B, using equations (B-11) and (B-13) 
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where 

5 L 

2 =I= 3 
sine 

3 

F o r  Case C, using equations (B-11) and (B-14) 

F o r  Case D, using equations (B-6) and (B-14) 

F o r  the exceptional case  K = O  , the  incomplete integral  may  be eval- 
uated in  simple t e rms .  
k l  - 0  in  the limit as K-0 , we find (refer to Appendix B) 

n(q1,al  = j d+ - 1 a r c  tan[-$? . 

Consider the cent ra l  angle fo r  Case A. Since 

$1 2 

0 

Substituting into equation (26), by use  of equation (B-6) and the limiting for -  
mulas  given in equations (23) and following, the central  angle is obtained as  

1 - x  - tancp = c 1 7 /  [n( l  q / l  - 2) x - c"] 

This  formula evidently applies fo r  all four  c a s e s  of equations (19), i n  the 
limit K = O  . By letting x + x  in equation ( 2 9 ) ,  we observe that 9'77/2 ; 2 
that is, i n  passing f rom outer radius  to inner radius, the filament is 
wound a quar te r  t u r n  about the z axis  fo r  the case  K = , for  any C # 0 . 
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D. Fi lament  Length 

The space curve generated by a filament is completely determined by 
However, fo r  many purposes the filament length is (R) ' 

Z and Q 

needed also.  
t u re  will deform under var ious combinations of p re s su re  and centrifugal 
loading, the fi lament length and advance angle (cent ra l  angle CP p e r  turn)  
must be held invariant. 

(R) 
F o r  example, to determine how a given filament-wound s t ruc-  

An expression for  filament length is easi ly  derived. 

F r o m  Figure  2, the differential element of length dL  (normalized 
with respect  to equatorial  radius  r ) is given by 

0 

d L  cosp cos& = dZ . 
Then, f rom equations (81, (121, and (141, with P f = o  , 

1 1 
d L  2 2 - = f  
dx Y 

(1 t-cz) - - a x  
, (30) 

where y is given by equation (16). In terms of J - in tegra ls  

- ; a  J1] . 
Hence, fo r  Cases  A and D, equations (19), substituting for  Jo and J1 
f rom Appendix B, the filament length is  given by 

(32) 

, k l )  - E(@1, kl)]} , L F f  1 {2F(@1, k l )  + n(1-x3)[FOb1 

where 1 -x2 
and k l  - . 

3 
1 -x  

F o r  Cases  B and C, equations (19), the a l te rna te  fo rm of J and J1 
0 

given in  Appendix B should be used, result ing in  the formula 
I -l , ( 3 3 )  

where x -x 
and k2 sin# 2 =J- x 2 -1 

x 2 3  -x 

The exceptional ca se  K = may be evaluated as a limiting p rocess  
as previously demonstrated for  equation (24) f o r  the mer id ian  curve and 
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equation (29)  for the central angle, 
tion (32)  takes the form 

Thus in the limit as  K'Q , equa- 

(34) 

{ [ l+zn( l -xz) ]  1 arc (1-x)(x-x2)} 

with x given by equation (23). 
2 



III. DISCUSSION OF RESULTS 

Type: 

Limiting 
ik Trans i -  
tion Case:  

17 

Waisted Bellied P rogr  e s s ive Reg r e s s ive 

Hyper- Asymptotic 
boloid Cylinder c u s p  Toroid Loop 

A. Classification of Meridional Shapes 

A morphology of axisymmetr ic  filament-wound s t ruc tures  can be de- 
veloped by discussing the range of possible solutions for the meridian given 
in equations (21),  (22),  o r  (24). These equations show the meridional shape 
to depend on the th ree  charac te r i s t ic  parameters ,  K , 0 , and C , which 
define the p r e s s u r e  load intensity, the centrifugal load intensity, and the 
angularity of the winding pattern respectively.  

F o r  the purpose of this  discussion, it will be assumed that both K and 

The range of 
a r e  positive ( o r  zero) ,  corresponding to positive internal p re s su re  and to 

tensi le  ra ther  than compressive forces  acting in  the fi laments.  
possible solutions, then, can be grouped into two c lasses  of periodic functions 
according to  the i r  topological character is t ics .  
scr ibed as  "undulating" (F igure  3) and "looped," (F igure  4). 
sponding sur faces  of revolution a r e  of the nature of corrugated tubes and to- 
roids  respectively.  

The two c l a s ses  can be de- 
The co r re -  

The two c l a s ses  of meridional curves  a r e  separated by the transit ional 
ca se  of a cusped function (F igure  3e) a n d  bounded by a degenerate periodic 
function which, in  the case  of the undulating species,  a s sumes  the shape of a 
hyperbola, (F igure  3a);  in the case  of the looped species ,  it  a s sumes  the  
shape of a single loop with asymptotic branches (F igure  4d). 

Each c l a s s  can be fur ther  grouped into two types. The undulating c lass  
may  be "waisted" such that the re ference  radius ro is a minimum and R 2 1 
(F igure  3b); o r  it may  be "bellied" such that the re ference  radius is a maxi- 
mum and R 5 1 (F igure  3c). 
straight l ine R 3 1 , corresponding to the meridian of a right c i rcu lar  cyl- 
inder (F igu re  3c). 
that  subsequent ordinates  of R = 1 follow a t  values of increasingly l a rge r  
positive Z i f  the  curve is s tar ted at the coordinate R =  1, Z = O  , and fol- 
lowed in  a direction of initially increasing Z ; o r  it may  be  "regressive" 
(F igure  4c )  in  the sense  that subsequent ordinates  of R = 1 
creasingly negative Z . The t ransi t ional  ca se  for  these  two types is the 
closed loop forming the meridian of a smooth toroid (F igure  4b). 

The t ransi t ional  case  for  the two types is the 

The  looped c lass  m a y  be "progressive," (F igure  4a)  such 

follow a t  in- 

A summary  of the possible meridional fo rms  is given in Table I below. 

TABLE I 

I Class:  I Undulating I Looped I 
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A discussion of the t ransi t ion cases  is  useful in  defining the domains 
of existence of the var ious types in  the K - C - 0 space. By studying these  
singular types, the ranges of K , 0 , and C corresponding to the var ious 
c l a s ses  of mer id ian  curves may  be established: 

1 ,  Hyperboloid 

The hyperboloid corresponds t o  tension infinitely g rea t e r  than the 
p re s su re  o r  centrifugal force,  Hence the hyperboloid requi res  K = 0 , Fb= 0 . 

2. Cylinder 

The cylinder is defined by constant radius which requi res  x = 1 . 2 This  condition is analyzed in  Appendix A, resulting in  the condition 

0 = C 2 -  K V Z  . ( 3 5 )  

Evidently fo r  cylinders,  cb cannot exceed unity for non-negative K . 
3. c u s p  

The cusp divides the corrugated tubes f rom the progress ive  loops, 
and requi res  the point of ze ro  slope (x  = x ) to  coincide with the point of 0 
infinite slope (x  = x ) . This condition is analyzed in Appendix C, resulting 
in  the condition 2 

Cusps occur  for  all values of 0 ; i n  the  l imit  o+a equation (36) reduces to 

K = 2 d 2 .  

The l imit  0-a may be viewed as the  limit T + O  and p -0 such that K 
0 0 

remains  constant. Then the radius  of curvature  is ze ro  at x =  1 and the fila- 
ment  lies along the  radius.  

4. Toroid 

The closed loop divides the  progress ive  loops f r o m  the regress ive  
loops and is defined by the condition Z = 0 , where Z is given by equa- 

t ions (21) and (22).  

(x2) 

These  equations are transcendental  and a n  i terat ive 



technique must  be used to  determine closed loop conditions. * However, c e r -  
tain resu l t s  may  be  obtained directly.  F o r  example, note that for  C = 1 , 
K = O  is a solution of Z = 0 fo r  any 0 . On the other hand, for  la rge  K , 

(x, 1 
L 

s e r i e s  expansion of the t e r m s  in equation (21) resu l t s  in the condition 

in  the l imit  K4- . These two points will be useful in  interpreting the 
behavior of the closed loop conditions fo r  var ious values of 0' . 

These classifications a r e  summarized graphically in  F igure  5, in  
which the domains of each type curve  a r e  indicated on a plot of K v s  C 
with n as the  parameter .  The curves  fo r  0 = 0 a r e  identical to those of 
Reference 3.  Thus, 
cylinders are  possible f o r  0 0 1 while cusps a r e  possible fo r  all values  
of 0.0. 

The effects discussed above are evident in  the  graph. 

The charac te r  of the closed loop boundary is drast ical ly  different fo r  
fl  6 1 than for  0 > 1 . F o r  L 1 , the  closed loop condition requi res  
K-'= fo r  some C 5 1 in accordance with equation (37 ) .  F o r  0 > 1 
however, th i s  asymptote no longer exis ts  (C  > 1) and the condition K = O  
at C =  1 for  all now dominates the  behavior of the closed loop boundary 
for C near  unity. In F igure  6 ,  the 'closed loop boundaries a r e  shown for  
a =  1 1. 1 , 1. 2 , and 1. 5 c lear ly  demonstrating th i s  behavior. 

B. Sample Resul ts  

Meridian curves  are plotted in  F igu res  7 and 8 for  the following cases :  

(1) C = O  , K = O  = 4 

( 3 )  C = O . 5  , K = O  = 4 

(4) C = O . 5  , K = O  , 0 = 4  

The value 62 = 4  was chosen fo r  convenience. In par t icular ,  the value Z = 0 

resu l t s  fo r  Case (1). 
(0) 

Figure  7 shows the effect of p r e s s u r e  on a centrifugal 

* F o r  n=O , it is possible to  expres s  all pa rame te r s  i n  t e r m s  of the  mod- 
ulus of the elliptic integrals  as the only unknown, great ly  reducing the la- 
bor  in  calculating closed loop conditions. 
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loaded fi lamentary s t ructure ,  
expected. 
since the filament length i s  different for  the two cases .  
same filament length, the equatorial radius  would be different for the  pres -  
surized v s  unpressurized s t ructure .  
the  filament i s  not meridian wrapped. 
curve i s  the same as for 
hole must  exist for  any helix-wound f i lamentary s t ruc ture  since the fi laments 
cannot intersect  the axis  of rotation (except for C = 0 
u re  8 the curve for  K =  0 is a corrugated tube and the curve for  K = 4  is a 
regress ive  loop, a s  indicated by the domains in Figure 5. 

In general  a m o r e  convex shape resul ts ,  a s  
Note that the two curves of Figure 7 a r e  not the same s t ruc ture  

By scaling to  the 

F igure  8 shows the s a m e  effect when 
The general  shape of the meridian 

C = 0 except in the vicinity of the axis.  A central  

). Note that i n  F ig-  



IV. EXPERIMENT 

F o r  the purpose of realizing the analytically predicted geometry of a 
rotating filament, the simple case  of K = 0 , n = 4  and C = .5 was chosen. 
This choice was made, since resu l t s  f rom experimentation with non-rotating 
p res su re  vesse ls  (K  > 0, Q = 0) has  been reported by the authors  previously 
(Reference 3 ) .  

Non-dimensional ordinate Z , a r c  length L , and central  angle Q 
were  computed for  the absc issa  R =  .4 f rom equations (22), (33 ) ,  and (28c) 
respectively,  yielding: 

Z = .46 

L = .87 

cp = 29' 

To generate  the corresponding geometry,  a meta l  chain of appropriate  length 
was supported on two disks  with the attachment points rotated and spaced r e l -  
ative to  each other by the indicated cent ra l  angle and distance. The disks,  in 
turn,  w e r e  supported by a quill mounted into the spindle of a modified lathe, 
equipped with a var iable  speed drive.  The tes t  equipment with rotating chain 
is shown in a t ime exposure photograph by Figure  9. A flash exposure photo- 
graph of the s a m e  setup, revealing the instantaneous geometry assumed by 
the chain, is shown in  F igu re  10. 

The geometry of the rotating chain was recorded by photography, using 
both f lash and t i m e  exposures  to  obtain end view, side view, and envelope 
contour of the rotating chain. 
by th i s  means.  The  re ference  gr id  shown on Figures  l l a  and l l c  was  ob- 
tained by double exposure,  F o r  this  purpose,  the quill assembly  was  r e -  
moved f rom the fixture af ter  the first exposure of the rotating chain on a 
tripod-mounted Polaroid camera.  
into the appropriate  normal  o r  axial  center  plane of the body of revolution 
generated by the revolving chain to minimize paral lax e r r o r s .  
shutter was then tripped for  the second exposure of the film. 

F igures  l l a - c  show typical r eco rds  obtained 

An inked reference gr id  was then placed 

The camera  

A theoret ical  computation was made  for  the end view, side view, and 
envelope contour (meridional  shape) fo r  the selected pa rame te r  tr iplet .  The 
resu l t s  of th i s  computation, together with experimental  data points obtained 
f r o m  the photographic r eco rds  in  F igures  l l a - c  a r e  shown in F igure  12. In 
the p rocess  of data reduction, the side view of F igu re  l l b  was cor rec ted  by 
a geometr ical  rotation to  compensate for  a slight delay in  the timing of the 
exposure flash. All other data were  obtained by direct ly  plotting chain co- 
ordinates evaluated f r o m  the photographs onto the graph in  F igure  12. The 
experimentally obtained data were  found to  a g r e e  with the theoretically p re -  
dicted geometr ical  shapes within reading accuracy  of the photographic r ec -  
ords .  
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V. APPLICATION 

Applications for  the analytical techniques presented in th i s  report  fall 
into two broad categories:  the design synthesis of optimized f i lamentary 
s t ruc tures ,  in which the s t ruc tura l  propert ies  of the fi laments a r e  utilized 
to  the fullest possible extent; and the study of specific problems ar i s ing  in  
the s t ruc tura l  analysis  of f i lamentary s t ructures .  The la t te r  application is 
of par t icular  interest  in the case  of la rge  elast ic  deformations observed in  
p re s su re  stabilized s t ruc tures  subject to  external loads, and in  the study of 
the s ta t ic  stability of such s t ruc tures .  

In the  t rea tment  of these  problems of analysis,  the assumption may  
be made that the fi laments remain  inextensional and completely compliant i n  
bending, and that the matrix o r  l iner  ma te r i a l  remains  s t r e s s - f r e e  during 
the deformation. 
i s  found in  the intr insic  propert ies  of the f i lamentary s t ructure ,  i. e . ,  i n  the 
propert ies  which will not change during the deformation process .  Such in- 
t r ins ic  proper t ies  a r e  e i ther  topological o r  me t r i c  in  nature. 

With these  assumptions,  a point of departure  fo r  analysis  

Retention of intr insic  topological proper t ies  as they apply to the over- 
all s t ruc tura l  configuration will form,  in  general ,  the end points o r  con- 
s t ra in ts  of possible deformation (i. e., a toroid will reamin  a toroid through- 
out the deformation). Intrinsic topological propert ies ,  as  they apply to the 
f i lamentary geometry,  a r e  of somewhat m o r e  subtle charac te r  and involve, 
for  instance, the number of t u rns  of the filament around the s t ructure ,  and 
the periodicity of the tu rns  pe r  revolution. This  charac te r i s t ic  i s  particu- 
l a r ly  evident in  the  case-of the smooth toroid, where the number of filament 
t u rns  around the toroid necessary  to complete a full revolution of the cen- 
t r a l  angle cp in  the winding pat tern consti tutes a n  intr insic  property of the 
filament a r y s t ruc  t u r  e. 

Intrinsic m e t r i c  proper t ies  a r e ,  according to  the assumptions of inex- 
tensional f ibers  s ta ted above, the lengths of the filaments. Additional 
intr insic  me t r i c  propert ies  may  be stated for  specific problems,  such as  a 
condition that c ross -over  points of differently oriented filament sys tems may 
not sl ide with respect  t o  each other (trell is-condition).  

The problem of s t ruc tura l  analysis  of a given f i lamentary s t ructure ,  
subject, for  instance, to a n  external load thus reduces to finding related 
s t ruc tura l  configurations with appropriately identical intr insic  propert ies ,  
and with the required discontinuities a t  the locations of load application. 

F o r  the purpose of illustration, two examples fo r  th i s  type of analysis  
a r e  summarized here .  
consisting of a non-rotating (0 = 0) bottle- shaped p r e s s u r e  ves se l  with me-  
ridional windings (C = 0)  anchored a t  two circumferent ia l  r ings ( C  = 1)  as 
shown in  the inset  of F igure  13. This element can be considered as ei ther  

The first example considers  a s t ruc tura l  element 
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representing the s t ruc tura l  portion of a spheroidal rocket motor  case ,  o r  
can be considered as a n  element of a "corrugated" s t ruc tura l  column. 

Consider now th is  s t ruc ture  subject to a n  axial  load P . The deformed 
configuration will re ta in  the length of the filament between the r ings and the 
circumferent ia l  length of the rings.  Since the nature of the deformation is 
such that ax isymmetry  is retained, the possible shapes of deformation can be 
established by holding the  fi lament length of the meridian and the radius of 
the r ings invariant, fo r  a range of selected K-values, which in this  c a s e  a r e  
conveniently normalized fo r  the invariant ring radius.  Resul ts  of this  pro-  
cedure,  in  t e r m s  of normalized load-deformation charac te r i s t ics  and fo r  a n  
a rb i t r a r i l y  assumed constant internal  p re s su re  a r e  shown in F igure  13, in- 
dicating the expected non-linear e las t ic  behavior of the s t ruc ture  similar to  
that studied in  detail  in  Reference 8. 

The second example considers  a range of non-rotating p res su r i zed  to- 
roids  formed by two branches of a meridional  winding pat tern joining a n  outer 
and inner equatorial  ring, as shown in  the inset  of F igure  14. 
a r e  designed fo r  pa rame te r  values of K = 5 , C = 0 , = 0 in  a condition 
without externally applied loads. 

1 the intercept  location of the two branches,  o r ,  i n  other t e r m s ,  the radii r 

and r of the outer  and inner equatorial  r ings.  These  radi i  a r e  related t o  

the ring c r o s s  sections ( o r  number of filament t u rns  n ) by the con- 

dition that the  s t r e s s  level  i n  the f ibers  forming the equatorial  bands be equal 
t o  the s t r e s s  level  i n  the f ibers  forming the meridional winding pa t te rn  (iso- 
tensoid condition). 

The toroids  

A range of designs is generated by varying 

2 
and n 1 2 

An axisymmetr ical ly  distributed and axial  loading P is  considered, 
acting at the outer r ing and reac ted  by a n  equal and opposite load applied 
at the  inner  ring. 
(i. e., the  st iffness fo r  small deformations f rom the unloaded equilibrium 
configuration) as i t  is affected by the par t icular  choice of the ring radi i ,and 
related number of t u rns  in  the rings. 
upon intr insical ly  invariant filament length and assumption of invariant inter-  
nal p re s su re , - a re  shown in  F igure  14. 
c r i t i ca l  pa rame te r  configuration at which the spring r a t e  vanishes,  indicative 
of a state of margina l  static stabil i ty of the s t ructure .  F o r  negative spring 
ra tes ,  a statically unstable s t ruc ture  can be identified, exhibiting a "geo- 
metr ical"  instabil i ty in  the sense that only geometr ical  and  no ma te r i a l  prop- 
e r t i e s  enter  into the  mechanism causing instability. 

The  question considered h e r e  is that of init ial  spring r a t e  

The resu l t s  of this  investigation, based 

It will be observed that t he re  exis ts  a 
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V I  CONCLUDING REMARKS 

The f i lamentary s t ruc tures  considered in  this  report  represent  ideali- 
zations of actual  s t ruc tures  in severa l  respec ts ;  the importance of each will  
need to  be  a s ses sed  in  specific applications in  view of the individual case.  
The idealizations selected were  such that relatively straightforward analyt- 
ical  formulation for  the pertinent geometr ical  charac te r i s t ics  of the fila- 
mentary  s t ruc tures  considered could be  developed. 
gain insight into the general  nature  of the problems in  design and operation 
of such s t ruc tures .  

These prove useful to  

In addition, the  bas ic  differential equations presented lend themselves  
to  considerable generalization including the case  of non-uniform internal  
p r e s s u r e  (of prac t ica l  importance for  rocket motors  subject to distributed 
iner t ia  loads and fo r  the design of i n se r t s  and endclosure attachments).  
These problems can be readily solved by digital integration such as  pre-  
sented previously (Reference 3 ) .  The value of the analytical  formulations 
in  this  ca se  is that of allowing a check for  the computor programs,  by tes t -  
ing them on a n  idealized case  for  which the resul t  can be readily verified 
analytically, as well  as by providing means  of initializing the digital pro- 
grams.  

Idealizations that may  be  ser ious  l imitations in specific applications 
r e s t  in  the basic  concept of monotropic membrane  a r r a y s  as  representat ive 
fo r  the s t ructure .  Where ma t r ix  materials of significant st iffness a r e  used, 
the assumption that matrix ma te r i a l s  will not contribute to the p r imary  
s t r e s s  sys tem must  be  questioned. 
t ropic  membranes  is the assumption of negligible wall thickness. 
c a s e  of thick-walled p r e s s u r e  vesse ls ,  specifically in  a r e a s  of polar buildup 
due to c ross -over  of the winding pattern,  a refined method somewhat remi-  
niscent of a "stress concentration" analysis  might be developed. 

Also inherent in  the concept of mono- 
F o r  the 

Finally,  the case  of deviations f rom axisymmetry remains  to  be  stud- 
ied f rom two points of view: the  s t ruc ture  may  originally be  built with op- 
erationally required deviations f rom axisymmetry  (as fo r  instance,  in  the 
case  of multiple nozzle and re t ro-por t s  in  filament-wound solid propellant 
rocket motors ) ;  o r  non-axisymmetric loading on originally axisymmetr ic  
s t ruc tures  may  cause deviations in  the deformed state.  
to  such problems,  using the technique of differential geometry,  has  been 
outlined, but not implemented, in  Reference 3.  The mathematical  difficul- 
ties, at f i r s t  sight, appear  formidable. Digital techniques, while cumber-  
some, may  be developed to effectively solve c r i t i ca l  problems in  this  area 
in  the future.  

A genera l  approach 

Astro Research  Corporation 
Santa Barbara ,  California 
September 30, 1962 
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APPENDIX A 

PROPERTIESOFROOTS x2 AND x 
3 

The roots x and x a r e  defined by equations (17) and repeated he re  2 3 
for convenience: 

x = -  2 { H - 7 / H 2  t C2 (K2 - 02) } , 
2 K2 - n2 

x = -  2 { H t d H 2  t C2 (K2 - a') } , 2 2 K - R  3 

where 

H =  
2 

K Y l  - C t (K2 - n2) . n - -  1 
4 

In the following analysis,  the pa rame te r s  K and sd will be assumed to be 
rea l ,  non-negative numbers,  a s  required by their  definitions as p r e s s u r e  and 
centrifugal loading pa rme te r s  with positive internal p re s su re ,  positive mass ,  
and tensile fi lament forces .  Also, the parameter  C i s  l imited to  the range 
0 5 C 5 1 according to  i t s  definition: C = s in  13 . 

0 

Consider f i r s t  the case  K > sd. Then H may be either positive or 
negative. F o r  H 0 , we must  have x 2 0 (equality for  H = 0 , C = 0 ; 
hence a l so  K - ha = 4) .  

Also d H 2  t C2 (K2 - a2) 2 I HI , which requi res  x 5 0 (equality for 

C = 0 only). Similarly for H 2 0 , we must  have x 0 (equality for 

H =  0 , C = 0 ; hence a l so  K - n = 4 ) ,  and a l so  

2 

3 

3 

7 /  H2 t C2 (K2 - n2) H 

which requi res  x 2 0 (equality for C = 0 only). Hence we have: 2 

Theorem A. For  K > fl  , x 2 0 and x 0 for all non-negative 
2 3 

values of K and 51. 

Now consider the case  K C n .  For  this case  H must  be positive 
(H > O ) .  Hence x > 0 , and since 3 



~ 

I 26 

we must have x 2 0 (equality for C = 0 only). Moreover x > x 2 3 2 .  

It remains  only to  show that x > 1 for all K < . For  C = 0 , we can 
wri te  3 

H = ( K t  0) [ l t T  1 ( 0 - K ) ]  

and 

which holds for a l l  K # (I (K  < Q) for C = 0 . Now hold K and fixed 
and vary C > 0 . If x3 < 1 for some C ( say  C1 ) #  then x = 1 for some 3 c.4. 
Thus, it is sufficient to prove that x3 # 1 for any C # 

x3 = 1 
K and 0 . Assume 

; this requi res  

or by squaring 

2 2 2  - (n2  - K  ) H = C (K - 0') n2 - K2 
2 

2 (Note that this squaring operation has  removed the distinction between x 
and x ). Since K # 0 3 

1 
4 - (  

Substituting for 

2 2 
Q 2 - K )  - H =  C . 

H yields 

0 = C 2 - K 7 / ' - C  2 . 

To determine whether this resu l t  corresponds to  x or x substitute it 
back into their  definitions. 2 3 We obtain 



x = 1  
2 

4 
x =  

1 -  ( y Z + K > ’  
3 

The latter equation permits no values of x in the range 0 < x < 4 , which 
completes the proof. Thus we have: 3 

Theorem B. For K , x 2 0 , x > x  , and also x > 1 for 2 3 2  3 
all non-negative values of K and a . 
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APPENDIX B 

EVALUATION O F  J-INTEGRALS 

designate the integral  
n( x) Let the symbol J 

n 
X = s1 -dx , 

Jn(x) Y 

The cases  to be considered a r e  n=O , 1 , and -1 . 
Cons id  e r  the variable 

sin# 1 = . 

In terms of # , we find 1 

Then denoting - 

we find 

o r  

(B-3) 

where F ($ ,  k) is the incomplete elliptic integral  of f i r s t  kind (Ref- 
e rence  7) .  



2 
Similarly 

1-(1-x ) s i n  @ 
drl 

- 2 2 q- O v-i J1 - 

$1 x +( l -x  ) [ l -k  2s in2#]  
d$ 1 

- 2 3 3 1 - 

or 

where E (0, k)  is the incomplete elliptic integral  of second kind. 
Finally 

o r  

2 
where n(@l , Q1 
and 

, k)  is the incomplete elliptic integral  of third kind, 

(B-7) 2 '  
= 1 - x  2 

1 
a 

.These equations are in  a f o r m  suitable for  the two cases  K > 42 , 
x C x  < x < l  , and K < n ,  l < x < x  < x  F o r  the remaining 3 2  2 3 .  
two cases ,  a n  al ternate  fo rm of these  integrals  is required.  

Consider now the  var iable  

x - x  
sin# -J L x - 1  . 

2 
2 



. 
Then in t e r m s  of @ , y becomes 

2 

2 
2 .  Y = d m ( x 2 - 1 )  sin+ 2 cos+ 2 $-- sin + 

Then denoting 

a 

we find 

o r  

where F (k) is the complete elliptic integral  of the first kind. 
Similarly 

where E ( k )  is the complete elliptic integral  of second kind. 
Finally 

d$ 

2 X 

2 - - -  
J-l  q- 
o r  



(B-11) 

where n(Q2, k )  is the complete elliptic integral  of third kind, 
and 

x -1  
(B-12) 2 2 

2 X 
Q = - ,  

2 

The incomplete elliptic integrals  of f i r s t ,  second, and third kind 
a r e  tabulated functions ( s e e  References 7 and 9 for  example). 
plete elliptic integral  of third kind can a l so  be evaluate$ in  t e r m s  of 
Heuman's Lambda Function, a tabulated function. 

The  com- 

Consider Case A: K > a ,  x x < x <  1 . Then we have 
3 2  

kl ' > O  and k 1 2 < Q  1 ' < 1  . 

Case  B: K > 0, x 1 C x  < x . Then 
3 2 

2 
k2 ' 7 0  and k Z 2 < Q  2 C 1  . 

F o r  both Case A and B, f rom Reference 4, No. 413.01, we have 

T Q  Ao(E , k)  
(B-13) 2 n(CY , k )  = 

Here  ho is Heuman's Lambda Function, and sin6 
CY (1-k ) 

C a s e C :  K C n , x  < x < l < x  . Then a 2 < O  . 

C a s e D :  K < Q ,  l C x < x  < x  . Then Q ' < O  . 
2 3 2 

2 3  1 

F o r  both Case  C and D, f r o m  Reference 4, No. 410.01, we have 

n ( Q 2 , k )  = (B- 14) 

with sinq =dZ 2 2 '  
CY -k  



APPENDIX C 

CONDITION FOR MERIDIAN CURVE OF CUSP 

Denote by x the value of x for z e r o  slope, and reca l l  that  x is 0 2 
the value of x for  infinite slope. Then the cusp condition is xo = x2 * 

F r o m  equation (14) (with pf = 0) 

xO 

while x is given by equation (17). Hence the condition x 0 2  = x is given by 
2 

2 2  
Squaring, collecting terms, and dividing out (a - K ) , we a r e  left  with 
the expression 

2 2 2 2 2 
K (1 - hz)+ (1-C2) - (K + - 4 0 )  L d 1 - C  2 = 0 , 

L 
which is a quadratic i n  e i ther  bl or  1-C . As a quadratic i n  h , we 
have 

d ( . ~ z - x o ) + h z K  2 x 0 - & 2 - 1 + x  K4 ) =  0 .  
0 

By the quadratic formula 

To have n > 0 we take the lower sign. Rewriting the radicand we obtain 
finally 

0 In terms of x 

2 7/1-cz 
h z =  1 - xo {d& 0 - l } ,  K =  1 -xo 



33 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Green,  A. E. and T. E. Adkins: Large  Elast ic  Deformations 
and Non-Linear Continuum Mechanics. 
1960. 

Oxford University P r e s s ,  

Hearmon, R. F. S. : The Elas t ic  Constants of Anisotropic 
Materials.  Reviews of Modern Physics ,  Vol. 18, No. 3,  Ju ly  1946. 
p. 409-440. 

Schuerch, H.U., 0. R. Burggraf, and A. C. Kyser (Ast ro  Research  
Corporation):  A Theory and Applications of Fi lamentary Structures .  
NASA TN D-1692 (N63-11057), December 1962. Available f rom 
Office of Technical Services,  $2.25. 

Williams, M. L., G. Gerard ,  and G. A. Hoffman: 111. The 
Effect of Filamen\%ry Mater ia ls  on P r e s s u r e  Vessel  Design. 
Proceedings of XI 
Sweden, August 15-20, 1960), Vol. I, Springer-Verlag,  Berlin,  
1961. p. 146. 

Schuerch, H. U. (As t ro  Research  Corporation):  Space Structure  
Design with Composite Materials.  
Apri l  1960. 

International Astronautical  Congress  (Stockholm, 

ARS Prepr in t  1096-60, 

Zickel, J. : Isotensoid P r e s s u r e  Vessels.  ARS Journal ,  Vol. 32, 
No. 6, June  1962, p. 950-951. 

Byrd, P. F . ,  and M. D. Fr iedman:  Handbook of Elliptic Integrals 
fo r  Engineers  and Physicis ts .  Springer-Verlag,  Berlin,  1954. 

Kyser, A. C.  (As t ro  Research Corporation):  A Contribution to the 
Theory of P r e s s u r e  Stabilized Structures. 
Apri l  1963. 

Selfridge, R. G. ,  and J .  E.  Mayfield: Table of the Incomplete 
Elliptic Integral  of the Third Kind. Dover Publications, Inc., 
New York, 1958. 

NASA T N  D-1919, 



34 

Z 

Figure  1. Monotropic Membrane of Revolution. 
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Figure  5. Domains for  Various Classes  of Meridian Curves. 
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Figure  6 .  Closed Loop Conditions fo r  0 7 1. 
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Figure 7 .  Sample Meridian Curves, c = 0 .  

. 6  

.4 

. 2  

0 
0 .4 . 6  .8 1.0 

R 

Figure 8. Sample Meridian Curves, C = 0. 5. 
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F i g u r e  9. T e s t  Setup, Rotating Chain, Time Exposure  

F i g u r e  10. Rotating Chain, F l a s h  Exposure.  
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Figure  11. Experiment- Rotating Chain, C = . 5, 0 = 4, K = 0. 
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Figure 13. Load- Deformation Character is t ics  of P r e s  su re  Stabilized, 
Corrugated Cylinder. 
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Isontensoid Toroid 
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Figure  14. Initial Spring-Rate of Axially-Loaded Isotensoid Toroids 
nl 

in  Function of Design Pa rame te r  n t n  1 2  


